I'm sure many of you have never heard of the Horus Vision system of ballistic compensation. I first saw a scope with an HV reticle myself on the prize table at the 2001 International Tactical Rifle Championship. It had a picture of the reticle on the end of the box, and I thought to myself, "What the hell is that!?" To satisfy my curiosity, I decided that I would take it on my turn at table, but someone got to it first. Of course, I couldn't stop with my curiosity piqued, and I can now say that the HV reticle is, without a doubt, the key to the fastest first-shot-hit on unknown distance targets I've ever used. On the long-range tactical shooting circuit, many pro-level shooters I know use this system with more adopting it every year. While some aspects of the HV system take some getting used to, the benefits far outweigh the challenges of the learning curve.

When I say "unknown distance" targets, I'm referring to real-world shooting or tactical long-range competitions, which are designed to simulate real-world engagement, whether with game or enemies. In other shooting sports—such as NRA High Power, Benchrest, F-Class, etc.—shooters have the luxury of engaging known-distance (KD) targets, meaning you can have sights or an optic zeroed for the exact range you are shooting since it will not change. In the real world (or a facsimile thereof), we don't know the range at which we may spot a potential target.

In the past, the military has used the mil-dot system for such ranging and taught a system by which the shooter would dial in their "come-ups" and "hold-offs" using the elevation and windage turrets on the scope. This system is time-consuming, and it causes the shooter to
simply forget to "come back" to zero, not to mention eventually wearing out the adjustments in the scope. It also assumes perfect tracking time after time. The HV system eliminates all of that because once you lay in your main zero, you never need to adjust it again. You simply find the spot in the grid dictated by your ballistic program.

Like the mil-dot system, the HV reads in mil-radians, so if you're accustomed to thinking in inches or minutes of angle like I was, that is probably the most difficult part of the system to master. You just need to learn how to change gears and think in mils in addition to inches or MOA. Once you accomplish that, the rest is easy.

You'll notice first that the HV reticles form a Christmas tree-like grid below the main horizontal stadia line. At first, this arrangement can seem very intimidating and overcomplicated, but after spending a bit of time learning and shooting the system, it becomes very intuitive as well as incredibly fast and effective. For many shots, after checking my range, I now have the hold-offs memorized for several of my rifles at 100-yard increments.

Also worth noting is that the HV system is a frontal-plane reticle system, as opposed to a second-plane reticle systems like those found in most optics. Most shooters are accustomed to using scopes with the reticles in the second plane with frontal-plane reticles found only on optics specialized for long-range shooting. In the average second-plane reticle scope, you'll see that no matter where you have the magnification set, the reticle always looks the same. When you adjust the magnification up and down in a scope with a frontal-plane reticle, the reticle appears to change size. This too might seem a little disconcerting at first but becomes very natural with practice.

The reason for this apparent change in size is that the reticle remains the same relative to the field. In other words, if your hold-off is one mil up and .5 mils left, that relationship to the target will always be the same no matter where you have the magnification set. That's the
beauty of the frontal-plane reticle: you can have a mapped reticle and know that the relationship of all that information will be constant regardless of where you happen to have the magnification. Therefore, you can set the scope to a magnification that makes the most sense for the particular shot.

As an example, let’s say you’re shooting a .260 Remington with a 123 Hornady A-MAX traveling at about 2900 MV with a BC of .510. Let’s say you have a crosswind of 5 mph from 9:00 (full value), and the target is at 1125 yards at an altitude of 6700 feet. You enter all this info into a ballistic program, and it tells you that you need to hold 7.8 mils up and 1.0 mil left. You place that point in the grid over the target, compose the shot, squeeze the trigger and send it. About 1.5 seconds later, the bullet hits the intended target. About three seconds after that, you hear the impact.

Does this all sound impossible? Well, a few years back after I had some time on the HV system, I was at the annual JP Rocky Mountain 3-Gun Championship at the NRA Whittington Center. With Tate Moots (top sniper for the DOE) watching, I entered just that information on my ballistic computer and hit a 12” plate using my .260 MOR-07 with my cold bore shot using the hold-offs displayed. Needless to say, I felt pretty good. I’ve since used the system in a number of matches with outstanding results not possible with any other system I’ve used.

While the Horus Vision system is not for every shooter or every application, for those willing to do a little homework and put in the practice in order, you’re all but assured outstanding long-range hit probabilities exceeding any expectations or previous experience.